Innovative braiding technique and bifurcation stents with a seamless transition area

Reference No: B78126

CHALLENGE
In Germany alone more than 300,000 patients receive a stent therapy for coronary diseases. Stent placement at vessel bifurcation sites is technically challenging and currently involves the assembly of separate stent segments. This can result in reduced density or even holes at the transition area, which increase the risk for re-stenosis. Another approach for bifurcation stents are one-piece stents, which can be braided or woven, but also do not provide optimal stability.

INNOVATION
The innovative braiding technique developed at the University of Applied Sciences Hof allows for simultaneous production of two or more strands to create tailored stents with maximum flexibility and stability and a seamless transition area with a homogenous density. The technique can be applied to a variety of materials such as Nitinol and is ideally suited for the production of bifurcation stents.

COMMERCIAL OPPORTUNITIES
Optimized braiding technique for bifurcation stents with a seamless transition area

DEVELOPMENT STATUS
Searching for a licensing partner