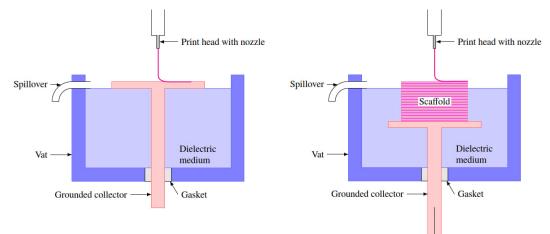
# **3D Printing: Improving Fiber Deposition Accuracy in Melt Electrowriting**

Reference No: B80072


### CHALLENGE

Melt electrowriting (MEW) is a high-resolution 3D printing technique that combines elements of electrohydrodynamic fiber formation and polymer melt extrusion. The ability to precisely deposit micro- to nanometer fibers of biocompatible polymers in a layer-by-layer fashion makes MEW a promising scaffold fabrication method for all kinds of tissue engineering applications. The general principle of MEW can be divided into two steps: firstly, the molten material is extruded through a nozzle using air pressure or volumetric dispensing. Secondly, by applying a high voltage electric field between the nozzle and a collector, the extruded polymer droplet transforms into a Taylor Cone from which a fiber jet emerges that travels towards the collector.<sup>1</sup> Accurate scaffolds are formed when the fiber jet is deposited in a direct writing mode layer-by-layer. Maintaining precise fiber placement throughout a print is crucial to obtain clinically relevant scaffolds.

However, with increasing build height a varying nozzle-to-scaffold distance and accumulating residual charges in previously deposited fibers lead to electric field variations that complicate accurate fiber placement resulting in adverse effects such as fiber pulsing<sup>2</sup> or bridging<sup>3</sup>.

#### **INNOVATION**

The presence of residual charges in previously deposited polymer material bends electric field lines due to a spatially varying dielectric constant and therefore distorts the deposition pattern of subsequent polymer layers. Consequently, this innovation proposes to submerge the collector layer-by-layer into a vat containing a liquid of a specific dielectric constant. The liquid serves to reduce the spatial variation of the relative dielectric constant and may also accept charges from the deposited polymer material. This results in a more uniform electric field enabling accurate fiber deposition even at large build heights.



## **COMMERCIAL OPPORTUNITIES**

The invention is relevant to polymer 3D printing of microscale structures.

#### **DEVELOPMENT STATUS**

The invention was tested in first experiments.

#### **REFERENCES:**

Loewner, S., Heene, S., Baroth, T., Heymann, H., Cholewa, F., Blume, H., Blume, C.(2022). Recent Advances in melt electro writing for tissue engineering for 3D printing of microporous scaffolds for tissue engineering. Front. Bioeng. Biotechnol. 17. https://doi.org/10.3389/fbioe.2022.896719

Wochleitner, G., Youssef, A., Hrynevich, A., Haigh, J.N., Jungst, T., Groll, J. und Dalton, P.D. (2016). Fibre pulsing during melt electrospinning writing. BioNanoMaterials 17 (3-4). https://doi.org/10.1515/bnm-2015-0022
Kim, J., Bakirci, E., O'Neill, K.L., Hrynevich, A., Dalton, P.D. (2021). Fiber Bridging during Melt Electrowriting of Poly(ε-Caprolactone) and the Influence of Fiber Diameter and Wall Height. Macromolec. Mat. And Eng. 306 (3). https://doi.org/10.1002/mame.202000685





Technology from TECHNICAL UNIVERSITY OF MUNICH

#### **IP rights:**

filed in 2020 EP, JP, US pending

#### **Contact:**

Dr. Bettina Keilhofer +49 (0) 89 5480 177 – 32 bkeilhofer@baypat.de

Bayerische Patentallianz GmbH Prinzregentenstr. 52 80538 München www.baypat.de